Quasi-likelihood Estimation in Stationary and Nonstationary Autoregressive Models with Random Coefficients

نویسندگان

  • Alexander Aue
  • Lajos Horváth
  • LAJOS HORVÁTH
چکیده

We propose a unified quasi-likelihood procedure for the estimation of the unknown parameters of a first-order random coefficient autoregressive, RCA, model that works both for stationary and nonstationary processes. For this procedure, the weak consistency and the asymptotic normality are established under minimal assumptions on the noise sequences. In an empirical study, we highlight the practicality of the quasi-likelihood estimation for applications. As no initial knowledge about the probabilistic properties of the RCA process is required, our theoretical results immediately facilitate the statistical analysis for practitioners. They may, moreover, have an impact on the treatment of the prominent unit-root problems often encountered in econometrics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modified Maximum Likelihood Estimation in First-Order Autoregressive Moving Average Models with some Non-Normal Residuals

When modeling time series data using autoregressive-moving average processes, it is a common practice to presume that the residuals are normally distributed. However, sometimes we encounter non-normal residuals and asymmetry of data marginal distribution. Despite widespread use of pure autoregressive processes for modeling non-normal time series, the autoregressive-moving average models have le...

متن کامل

Estimation in nonstationary random coefficient autoregressive models

We investigate the estimation of parameters in the random coefficient autoregressive model Xk = (φ+ bk)Xk−1 + ek, where (φ,ω 2, σ2) is the parameter of the process, Eb0 = ω2, Ee0 = σ 2. We consider a nonstationary RCA process satisfying E log |φ + b0| ≥ 0 and show that σ2 cannot be estimated by the quasi-maximum likelihood method. The asymptotic normality of the quasi-maximum likelihood estimat...

متن کامل

Maximum likelihhood estimation and model selection for nonstationary processes

The Gaussian maximum likelihood estimate is investigated for time series models that have locally a stationary behaviour (e.g. for time varying autoregressive models). The asymptotic properties are studied in the case where the fitted model is either correct or misspecified. For example the behaviour of the maximum likelihood estimate is explained in the case where a stationary model is fitted ...

متن کامل

Unified Interval Estimation for Random Coefficient Autoregressive Models

The consistency of the quasi maximum likelihood estimator for random coefficient autoregressive models requires that the coefficient be a non-degenerate random variable. In this paper we propose empirical likelihood methods based on weighted score equations to construct a confidence interval for the coefficient. We do not need to distinguish whether the coefficient is random or deterministic an...

متن کامل

Estimation in Threshold Autoregressive Models with Nonstationarity

This paper proposes a class of new nonlinear threshold autoregressive models with both stationary and nonstationary regimes. Existing literature basically focuses on testing for a unit–root structure in a threshold autoregressive model. Under the null hypothesis, the model reduces to a simple random walk. Parameter estimation then becomes standard under the null hypothesis. How to estimate para...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011